
[image: https://lh3.googleusercontent.com/vrcAGGuZBSe3bIb8nkwpnv_5D_YVxJ_lX9s6kWGn0-vUHWRiwRLsy17-uj-0H9Dgcx0rXL-ozyYkeOpVVmfU-kKfakFUS_bOgSNkk49ej7Kp8G6fVgotMSCI33Kb-uI9EYp4-pM]

Texas Department of Transportation
Team Members:
Patrick Sullivan: Project Manager
Sam Johnston: GIS Analyst
Andrew Goin: GIS Analyst
Tyler Armstrong: GIS Analyst

December 3, 2018

Prepared for:
[image: Image result for TxDot]

Prepared by:
[image: https://lh3.googleusercontent.com/vrcAGGuZBSe3bIb8nkwpnv_5D_YVxJ_lX9s6kWGn0-vUHWRiwRLsy17-uj-0H9Dgcx0rXL-ozyYkeOpVVmfU-kKfakFUS_bOgSNkk49ej7Kp8G6fVgotMSCI33Kb-uI9EYp4-pM]

Table of Contents

Abstract 1
1. Introduction 1
2. Data 2
3. Methodology 2
	3.1 Data Filters 2
	3.2 Intersection 3
	3.3 Interchanges 4
	3.4 Parser 4
	3.5 False Intersections 4
	3.6 Angle Geometry 7
	3.7 Python Script 8
4. Toolbox 11
5. Results and Discussion 11
	5.1 Results of Intersection Tool 11
	5.2 Data Quality Issues 12
	5.3 Discussion 13
6. Conclusion 14
7. References 15
8. Appendix I 15
9. Appendix II 16

ABSTRACT
	This article will examine a set of programs that will categorize roadway intersections based off their intersection angle. The analysis outlined in this paper is critical for MIRE classifications for interchanges and intersections. Implementing these programs will aid in identifying MIRE classifications.
[bookmark: _GoBack]In the introduction, we outlined how the program is crucial for identifying highway intersections and interchanges and that the MIRE intersections identified in the program are important for the Moving Ahead for Progress in the 21st Century (MAP-21) Act. Next, we describe the shapefiles that were provided to us by TxDOT in the Data section. After discussing the data, we dive straight into the methodology. In the methodology, we describe how we created a data filter for on ramp intersections using a selection tool, the python script and methodology behind the on/off intersection tool, and a series of model builder tools that along with a python script that identifies the interchanges and intersections based off the MIRE regulations. Afterwards, we explain our deliverables in a toolbox that contains all the tools, model builders, and python scripts in the project. The results and describe the output of the toolbox in more detail and we identify mishaps that occurred during the journey of our project. Finally, the conclusion paragraph describes what we achieved in the project.
1. INTRODUCTION
Roads are the main part of structure in society today. Maintaining physical upkeep and current records or these roads are of great importance and a great deal of that responsibility is placed on the states by the federal government. Texas roads are maintained by TxDOT, Texas Department of Transportation, and the federal government has recently locked down on some of the required records of these roads. Maintaining records of the roads helps with coordination and more importantly, safety. This was the top focus of the federal government by putting in place The Moving Ahead for Progress in the 21st Century (MAP-21) Act in 2012. Just how roads have attributes such as road type, direction, name, etc.; the federal government is requiring attributes and location of the MIRE road elements intersection and interchanges. TxDOT has reached out to Spatial Solutions to help with creating a code or tools to help with this process since intersections and interchanges are just a small portion of MIRE road elements and the MAP-21 act. Spatial Solutions hopes to create a code or a set of tools to help in the process of locating and identifying intersections and interchanges all over Texas. Reaching out to Spatial Solutions in order to complete this task will be a huge time and budget saver.

2. DATA
	All the data that we used was provided by TxDOT. It was given to us as a file geodatabase that included two feature classes: polyline feature class of road centerlines and polygon feature of county boundaries. According to the client, the accuracy of the data was within about 5 feet. The projected coordinate system used by the client was the NAD 1983 Texas State Mapping System. We used the same projected coordinate system for all other tasks of the project.

3. METHODOLOGY
3.1 Data Filters
 	TxDOT has provided our group with a dataset containing information about the roadways all over Texas. It also contains data pertaining to the attributes of those roads such as: what kind of roadway, the accessibility of the road, unique identifiers, the presence of a median, etc. We focused our study to the Travis County area, so we needed to create a data filter to get a corrected dataset that we could work with. Another request of TxDOT was to perform classification on intersections and interchanges. After looking at the data and performing some queries, we discovered that interchanges and intersections consist of different road data attributes, so our group will need two different “revised” data sets for the intersection portion and the interchange portion. We created data filters off differences in the attributes of the data.

3.2 Intersection
The intersection data filter is a query selecting attributes that focus the data to strictly intersections. The query looks like this,

“(RDBD_TYPE = 'Single Roadbed' AND MDN <> 'None' AND RTE_PRFX NOT IN('CR' , 'CS' , 'FC' , 'FD' , 'NA')) OR (RDBD_TYPE = 'Single Roadbed' AND RDWY_DSGN = 'One-Way Pair' AND RTE_PRFX NOT IN('CR' , 'CS' , 'FC' , 'FD' , 'NA'))”

This query selects single roads and one-way pairs and containing no medians. The “RTE_PRFX” refers to the route prefix, such as farm road or highway, and the following 5 prefixes are those that TxDOT is responsible for maintaining and reporting on. After performing this filter, the data will consist of only center lines, so that intersection points can be derived. This data filter helps take some of the “noise” out of the data so that our tools can operate correctly and efficiently. This is important to do before anything can be done so that we can ensure the results are the desired results. Reference Figure 1 to see the design of the model built for intersections.
[image: https://lh4.googleusercontent.com/SJFWZVb8bPyHkRASXD1EWrNZX03cVv-hxxd-mMbKWNLqTo_r2T8rIT61xquLzt93YRVjF4-hq9eLDJPXX5ye1B35tHeOdNQVdNv7CXE6OsNvWCG5G_9n1Rq6O2JGrYOyFCByHp_LcLA]
Figure 1. Intersection Data Filter
3.3 Interchanges
After looking at the data, we felt that a creation of a separate filter for interchanges was necessary. The separation of the two helps to get rid of any other noise or confusion. The interchange filter is like the intersection filter in that both are focused on TxDOT maintained roads. The main difference comes in the query for what kind of road. We created an interchange query that selects road with attributes like ramps and turnarounds. This guarantees no confusion between interchanges and intersections. Refer to Figure 2 to see the similarity of design to the intersection filter.
[image: https://lh4.googleusercontent.com/BaGC_UlTgi2ox_DsaHofo6fZ_0H4vkxTSFNK0ELHaV0wlzNHttG1c_c05dNsR6vMHNiMuosgVWZabduF_BSsc46vhm9OnM7hGC-xYpqf-Rk8W5hirgfJe_V_n8LW7nfoyr7SUq9Nebs]
Figure 2. Interchange Data Filter
3.4 Parser
After clipping the TxDOT roadway network to the Travis County Shapefile, the beginning and end DFO field needed to be corrected so that the line geometry and endpoints are recorded at the end of the Travis County shapefile and not the Texas Shapefile. This ensures correct road line geometry and lengths for further processes.

3.5 False Intersections
	The Intersect (Analysis) tool in ArcMap Desktop calculates the intersection of one or more feature class. The output of the Intersect tool is a feature class with the portions of the input features that overlap. The Intersect tool can work on any combination of geometry but the output can only be of the same, or lower, the dimension of geometry. In the case of polylines, the output will be a point feature class (“How to intersect works”).
	One of the first steps in this project was using the Intersect tool to calculate the points of intersection of road centerlines. The Intersect tool does not consider the physical realities that govern the actual roads represented by polylines. In the case of interchanges, the Intersect tool will produce intersection points where two or more grade separated roads cross despite there being no actual link. It, therefore, was necessary to differentiate the intersect points of roads which share no physical link (false intersections) from those that do have a physical link (real intersections).
	There were many approaches considered such as using raster digital elevation models, satellite imagery and even machine learning. It was decided that a more practical approach was using the attribute fields provided with the road polyline feature class. It was needed to develop logical rules that would match only the attributes of roads comprising real intersections. Developing these logic rules began by creating training data in the form of a point feature class that was comprised of known real and false intersections. The logic rules would then be developed through a process of trial and error by testing the output of proposed logic rules against our training data.
	Developing a set of logic rules for identifying real intersections required being able to compare the values of an attribute between two or more rows. Having SQL-like functionality to rapidly verify if proposed logic rules would correctly identify only real intersections was needed. SQLite was used to accomplish this task rather than the ESRI ArcPy module. The primary motivation for this choice was the constraint of time. It was faster to develop a short Python script that executes SQL statements on an in-memory SQLite table than it was to learn to do something similar using ArcPy.
Another consideration is that the SQL functionality in ArcMap is limited because the SQL SELECT statement is hardcoded in the program. More complex queries are possible using SQL subqueries. The functionality of subqueries in ArcMap is dependent on the functionality of the underlying method of data storage (“Subqueries”). All these considerations made a self-contained SQL database library like SQLite a practical alternative.
The actual development of the logic rules involved first creating a point feature class that grouped the intersect points of each road together by a common intersection identification number. This was done by using the Identity tool to ultimately create a foreign key field known as InterID. We used the attributes from this point feature class to populate a table in an SQLite file database. This table of road attributes was then used to start formulating the SQL commands that would be used in our final program. It was ultimately decided that a SQL inner join would be the best.
Once we had decided on using a SQL inner join, we started to finalize a short Python module named TxDOT.py that uses ArcPy and SQLite3. The first step is filtering out all roads that have a median according to the MDN attribute. This was done using the SearchCursor and by specifying a SQL where clause. These filtered road attributes then populate an in-memory SQLite table. Finally, the road attributes are joined together using an inner join based on the attribute patterns specified in Table II-1. The output is either a list of intersection keys or a string that can be used in a SQL where clause (Table II-2).
Our client is a large state government agency. This makes it critical to take precautions to avoid unintended data modification or compromise their security. For this reason, the Python module TxDOT.py uses the read-only data access class SearchCursor to retrieve road attributes (“SearchCursor”). This is to prevent unintended data modification of the original data source. A simple sanitation check is also performed in two_road_InterIDs to verify that all the intersections keys are only integers. This is done to helps avoid something malicious or unintended from being interjected into later parts of the program. The in-memory SQLite database is temporary, and the data discarded after the program finishes.
The txdot.py module only considers two pairs of roads that match the rules given in Table II-1. The module could be dynamically expanded to handle more than two roads by nesting SQL inner joins. We found that this was unnecessary as the TxDOT.py module still correctly selected real intersections of more than two roads so long as that there were two roads at an intersection matching the logic rules that we had developed.
The txdot.py module correctly identifies real intersections. We manually verified if there were false positives. A behavior that was observed is that txdot.py will identify as a real intersection certain breaks in-line geometry. This is a result of the Single Roadbed-Single Roadbed rule. This is technically a real intersection but likely not desired or useful to the final deliverable. A simple solution suggested to us by TxDOT was to simply check if the road names of both roads matched. The issue we had was that most of these false positives, using only the data provided by the client, had numerical road names that did not exactly match. The numbering of the road names was not close enough, or seem to adhere to a pattern, to develop a reliable rule. A solution to this problem could be to obtain additional road line data from TxDOT’s website that has a MAP_LBL attribute. We decided that, as far as the TxDOT.py module development is concerned, it would be best to leave it to the user of the module to further filter the real intersections.

3.6 Angle Geometry
One major contributor to identify different intersections is the angle at which two angles intersect. By counting the number of legs and by selecting the angles at which the intersection occurred, the type of intersections can be classified for the MIRE regulations using these methods. To calculate the angled geometry, we created a series of model builders and a python script to classify the intersections. Here is how the model builders and python script works.
The first model builder consists of several tools to create a near angle attribute table. First, the model builder intersects the on the system and off system roads to generate intersection points where the two shapefiles meet. Next, a five-foot buffer is generated around the intersection points. Then, more intersection points are generated where the clipped road layers meet the buffer edge to create the buffer intersect points. Originally, the buffer intersects points are considered one-point feature because the if the intersection occurs on the same street ArcMap counts those features as one point. Therefore, the multipart to single part tool split the same buffer intersect points into separate points. Once the buffer intersects points are split apart, the near angle table generator tool calculates the angle from the buffer intersect points to the original on/off system intersect points and generates a table from those calculations. Additionally, we created a spatial join of the multipart buffer intersect points to count the number of buffer points per buffer to create the leg count. From there, the python script rearranges the buffer intersect points to a csv file that can be joined to the on/off system intersect points.
For the second model builder, we simply joined the python generated csv to the on/off system csv. Then, we created a selection tool that selects the intersect points based on the angles created. From the selected points, new points are created based on the selection. Please see Figures 3 and 4 for clarification. [image: https://lh6.googleusercontent.com/ZW96p4jyznhEmL91kr9vj7hV3tz4s0NobDDuGuxlDS5Hm5yc0rwKmd7S1NSVHiC4D7dj-GKxeeMKG_YpY1lci9KwhzxUZ1wsiNe98uGUBbiawHMNm30hfzJydqnjCmAK_df3O0dAbbE]
Figure 3. Intersection Model Builder[image: https://lh6.googleusercontent.com/qIwh0syUNDelsTSEJoqueyimmNEZWV2DNidgwZ4UszgKAQsFhmHMIjI2OV_E2VcIe-4rlzPOzYRDYwnKJvVaaqqtNTT6ZgXvKpQel-Z3ldFChZ6uRyYw1anUpXJtvuxNIdFsstX0p74]
Figure 4. Final Selection Tool
3.7 Python Script
	We could not find a tool in ArcMap map that was enough to solve our problem to rearrange the output for the near angle table. Therefore, we created a python script took the near angle calculations and combined them to a dictionary based on the near angle FID dictionary. Here are the specific details on how the program.
	First, the program imports the dictionary and csv modules. These modules are critical to the program, and the program will not work without them. The csv module allows the python script to read in the near angle table in the csv format for appending the columns of the csv to a list. Dictionaries are a crucial module in the program because dictionaries are used to join the angles together based on the Near FID. After the program imports the csv and dictionary modules, it imports the near angle csv using the csv module.
	In order to import and use the csv file, one must first create a string of the file location within the pc or mac. Once the file location is saved to a string, then the program will open with the near angle csv file and read in the data with the csv.reader() command. Once the data is available to the python program, to blank lists acting as global variables are created. There is a for-loop that runs through the csv.reader() variable. Within the for-loop, the 10th column is added to a blank angle list and the near FID is added to the blank near_FID list. For future processing within the program, the label string for the first element for every string is removed to keep the data type of each list the same.
	Once each of the lists contains the angle and near FID data, a tuple is created to combine both lists. Afterward, a dictionary is assigned to a variable with the defaultdict(list) command. The tuple contains the near_FID in the first combined list and the calculated angle in the second combined list. The format of the tuple and the dictionary are perfect for processing data later in the program. The structure of those data types provides an unlimited number of patterns that one can perform using a combination of loops and counts.
 When the tuple is created, because there are two values per iteration, a for-loop can go through and edit changes to both values assigned in the for-loop. Therefore, in the program, there is a for-loop that adds the corresponding angles to the rest of the near FID dictionary per every iteration.
After the data is assigned to a dictionary, the dictionary is converted to a string. This conversion takes place because, in write features to a new file, one must convert the unreadable dictionary values to string values for the new csv file that will be written later in the program. Subsequently, the conversion takes place and the dictionary transitions to a string list with a for-loop conversion. Similar to the for-loop before, the FID and the angles are appended to a list in each iteration. The items are organized numerically from least to greatest in the original dictionary using the sorted(joined_dictionary.items()) command. Once the dictionary elements are in a list per iteration, the iteration list is appended to an empty list that appends that collects the data in each passing iteration.
For ArcMap to have the capability to interpret the data, a new file is written to display the data. To create the file, a string with the desired path and name is defined globally at the beginning of the program. The string is assigned to a variable to open the new file.
In the new file, a series is written that are conducive to the data in the project. With the new file open, the file writes the string 'FID, Angle1, Angle2, Angle3, Angle4, Other_Angles' and '\n' to create a new line of code. Due to the nature of csv files, a comma is written between a parcel of data. Without the comma, the csv file will not be readable without the comma acting as the delimiter. Next, there is a for-loop that goes through the sorted dictionary list string. For every iteration in the for-loop, the near FID and angles of the dictionary are joined and written in the new file with the command ''.join(row[0])+','+',’. join(row[1])+'\n'. When the for-loop is finished, the output the file contains 6 columns with all of the data rearranged into a csv that can be joined to the project for further processing. Please refer to Figure 5 to see the code.
[image: https://lh4.googleusercontent.com/hMxUh0PktcTlHtanT1Q4Ut90Jv8HfcQkt0O2Z9SIE_aoPO1kgLLq6_fbgWZrIWpEbxI2axZDQ8Kh6jR42uO1y_FO67q419V6wshim_Y-znvdgnNHTJK4KhlP-30TdnjcWGtm1khMuLM]
Figure 5. Angle Rearrange Python Program

4. TOOLBOX
	As a part of the final deliverables, we will include a toolbox with all the model builders as described above. The toolbox will contain a toolset, an angle generator model builder, a data filter model builder, rename and selection model builder, the python script for rearranging the near angle table output, and the python program for identifying on and off intersections. The tools in the toolset consist of the tools add join, buffer, clip, generate neat angle table, intersect, join field, multipart to single part, near, remove join, select, spatial join, and the table to table tool. The toolset and the model builders work together to create the desired output.

5. RESULTS AND DISCUSSION
5.1 Results of Intersection Tool
The cumulative output of this set of tools is a point layer associated with the intersections of TxDOT maintained roads, in the form of standard roadway intersections and highway interchanges. Attributed to these points is a geometry identifier, which is derived from the angles generated by the Near Angle Tool and classified based on the number of spires (roads) converging at the intersection point and an angle threshold of ten degrees above or below the specified angle.
In addition to this identifying attribute, each intersects point has an associated latitude and longitude in accordance with MIRE safety requirements. To differentiate interchanges from standard intersections, interchanges have been given a unique identifier that is comprised of a unique route identifier for route one and a unique route identifier for route two. These unique identifiers are the Route Roadbed Name of each route comprising the interchange. The resulting point layer table is comprised of fields that are MIRE Element requirements that will assist future users to easily identify intersections and interchanges and their associated attributes.
The final Toolbox product is a set of models and Python scripts that allow future analysts to attribute MIRE Elements to newly built intersections and interchanges, or older ones that do not yet meet these requirements, without having to do the whole process step by step.

5.2 Data Quality Issues
During the process of creating the tools, we encountered a few issues concerning the quality of digitization of the road shapefile. This came in the form of unconnected lines where the lines should be intersecting, resulting in the tools inability to extract an intersection where there should be one.
This issue was brought forth during the request for proposal presentation and was not a concern, resulting in our team overlooking these issues. Another minor issue arose when the road shapefile was clipped to Travis County. Where the clipping tool cut off TxDOT maintained roads it kept the original distance from the origin field, resulting in a false distance. This was remedied by using the Python Parser in the Field Calculator to create a new distance from the origin for these clipped paths. Figure 6 represents our final output.
[image:]
Figure 6. Intersections and Interchanges
5.3 Discussion
Along the way to our final output, there were some changes and realizations about our process that helped us to achieve our result in a much more efficient way. The first and most important was the realization that when the Near Angle Tool was run, the resulting angles of each individual intersection were given an Angle Feature Identifier (FID) to help identify which angle was attributed to which part of the intersection buffer. Before this realization was made, we were having issues finding which angle was attributed to which specific part of the junction. The essential takeaway from this problem was researching the tool outputs more thoroughly and combing through the resulting attribute table with a keener eye on what the fields represent.
After finding the Angle FID, we were able to attribute specific angles to specific parts of the intersection, which was a key part in our classification of the intersection based off of the angles. A smaller issue that we faced that could have been an easy fix would be to use a file sharing and editing software like GitHub to work collaboratively on the project. This would have saved us time and effort that was otherwise spent comparing files each member had altered since our previous meeting and attempting to match our results and processes.
A big change in our workflow that occurred right before the progress report was the switch to building the tools initially in Model Builder, with the final Model being exported as a Python file. This change was implemented because of the varying degree of scripting knowledge that different members of our group have, ranging from none to moderately experienced, allowing all members of the group to work hands-on with the data to produce the final tools while still allowing our final product to come in the form of Python scripts. These final scripts will allow future TxDOT analysts to quickly perform these processes while having free hands to move on and meet more MIRE safety standards.

6. CONCLUSION
Overall, this project proved to be a slight challenge for Spatial Solutions. The TxDOT problem really helped us focus on our coding skills and manipulating the attributes of the data and using them in our favor for locating and identification purposes. Spatial Solutions hopes that the tools and processes used are of use to TxDOT in completing the MAP-21 act and identifying intersections and interchanges all over Texas. If the tools created help make the roads even a little bit safer, then it was a success.
Working with TxDOT has been fantastic and they have been a huge help whenever we encounter a problem and I believe one of our associated m have inquired about future work with them. TxDOT has been excellent clients and Spatial Solutions is thankful for consideration of this task.
7. REFERENCES
Help. What is SQL?-Help | ArcGIS Desktop. http://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/how-intersect-analysis-works.htm. (last accessed 2 December 2018).
SearchCursor. What is SQL?-Help | ArcGIS Desktop. http://desktop.arcgis.com/en/arcmap/10.3/analyze/arcpy-data-access/searchcursor-class.htm (last accessed 2 December 2018).
What is SQL selection? . What is SQL?-Help | ArcGIS Desktop. http://desktop.arcgis.com/en/arcmap/10.3/map/working-with-layers/sql-reference-for-query-expressions-used-in-arcgis.htm (last accessed 2 December 2018).
8. APPENDIX I: GROUP MEMBER CONTRIBUTION
Group Manager: Patrick Sullivan
	During the project, I managed and delegated responsibilities to the other group members during the paper writing process and during the actual GIS work. I managed meeting times with our group as well as with our client. For the project, I wrote the Python scripts concerning the angled geometry and near angle tool. I also constructed the model that attributes the angled geometry to the intersection point as well as the location attribution for intersections.
GIS Analyst: Sam Johnston
	I worked on the timetable and budget for both the proposal and progress reports. I helped develop the tool that separates the real and false intersections. I worked on documenting the TxDOT.py module and wrote about the development of this module for the final report.
GIS Analyst: Andrew Goin
During the span of this project, I was mainly responsible for the introduction and overall explaining the project. As for as processes and tools, I am responsible for making the data filters and helped with the early stages of data preparation.
GIS Analyst: Tyler Armstrong
	As GIS Analyst, I assisted the group members in building the models for the toolbox. Specifically, I created a tool to rename unique route identifier fields in the intersect point attribute table. For the project proposal, I was tasked with writing the literature review and parts of the methodology. For the progress report, I was tasked with writing about the Near Angle Tool, and part of the methodology. For the final report, I wrote the results and discussion section as well as parts of the Toolbox section. I also created an HTML page that displays the intersect point output that was uploaded to ArcGIS online as a feature service.
9. APPENDIX II: METADATA
Table II-1. Road Attributes for Roads at Real Two Road Intersections.
	RDBD_TYPE for Road A
	RDBD_TYPE for Road B
	MDN for A and B

	% Frontage
	% Frontage
	‘None’ or ‘Unknown’

	% Frontage
	Single Roadbed
	‘None’ or ‘Unknown’

	% Frontage
	Connector
	‘None’ or ‘Unknown’

	Grade Separated Connector
	% Roadbed
	‘None’ or ‘Unknown’

	Single Roadbed
	Single Roadbed
	‘None’ or ‘Unknown’

Table II-2. TxDOT.py Function Purpose
	Function Name
	Purpose

	create_memory_table
	Creates a temporary in-memory SQLite database with a table (Intersections) that is populated with the attributes of roads at all real and false intersections. The resulting database connection object can then be queried and manipulated with SQL statements.

	two_road_InterIDs
	Returns a list of integers that are used as foreign keys to reference points of real two road intersections.

	get_selectby
	Takes the return list from two_road_InterIDs and returns a SQL “Where Clause” that may be used in ArcMap or ArcPy.

Table II-3. TxDOT.py Parameter Types
	Function Name
	Input Type
	Input Dec

	create_memory_table
	String
	A string containing the feature layer name or filename path for the feature class.

	two_road_InterIDs
	Database object
	The database connection object returned by create_memory_table.

	get_selectby
	Database object
	The database connection object returned by create_memory_table.

Table II-4. TxDOT.py Return Types
	Definition Name
	Return Type
	Return Desc

	create_memory_table
	Database object
	An SQLite database connection object. This object allows access to the in-memory database that contains a table named Intersections.

	two_road_InterIDs
	List
	A list of integers (InterID) that are used as a foreign key to identify the original road intersection point.

Example Return:

[3, 35, 66, 69...]

	get_selectby
	String
	A string that contains the integers returned by two_road_InterIDs in the form of a SQL “Where Clause” that can be used in ArcMap’s Select by Attribute dialogue or ArcPy’s SelectLayerByAttribute_management.

Example Return:

“OBJECTID IN (3, 35, 66...)”

2

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image1.png

image2.png

