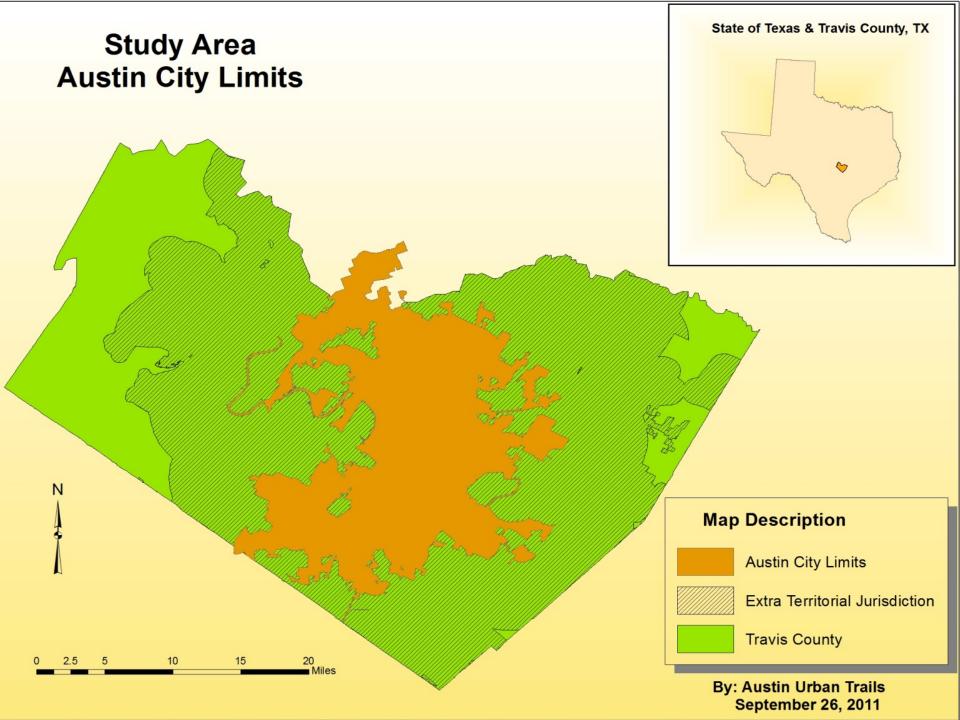


Amber Bennett- GIS Analyst & Cartographer


Jason Hinojosa- GIS & Remote Sensing Analyst

Neliralda da Silva- GIS Analyst & Web Developer

Purpose

- Help the Urban Forestry Program meet their goals:
 - Identify Shade Distribution Along Austin Trails
 - Create Canopy Corridor Overlay
 - Develop Shade Index

Tree Canopy Benefits

- Results of Maintaining a Healthy Canopy
 - Cleaner Environment
 - Lowered Crime Rates
 - Raised Real Estate Values

Data

- The data was provided by the City of Austin's Urban Forestry Program & Board, and also acquired from the city's GIS Data Sets include:
 - * Trails
 - Tree Canopy
 - Watersheds
 - Neighborhoods
 - Parks
 - Streets
 - Sidewalks network
 - Austin City Limit
 - * ETJ- Extra Territorial Jurisdiction
 - 200ft Grid

Methodology

- Tree Canopy coverage data used as the base layer for other areas to be extracted
- Cut out the three separate sections of canopy coverage: Parks,
 Watersheds & Neighborhoods extending out to the ETJ
- Extract the Trails using each individual section with coverage
- Include a 20ft buffer from the Trail to analyze the trees that provide the coverage

Methodology

- Results in illustrations of the canopy coverage over the trails that are within the Parks, Watersheds, and Neighborhoods
- Next will be to determine and quantify the amount of available shade within the trails of each section
- Trails will be divided in a range of available shade per 200ft grid
- Final step:
 - develop a shade index according to distribution of the canopy coverage along the trails

Implications

- The data presented can serve as a resource for future project planning direction also used to correlate canopy coverage with:
 - Tree Planting Projects
 - Air Quality Assessments
 - Urban Heat Island Studies
 - * Home Prices
 - Crime Rate
 - Bike-ability

Timetable

	City of Austin - Inventory and GIS Database Development												
	Week1	Week2	Week3	Week4	Week5	Week6	Week7	Week8	Week9	Wee10	Week11	Week12	Week13
	21-Sep	28-Sep	5-Oct	12-Oct	19-Oct	26-Oct	2-0ct	9-Nov	16-Nov	23-Nov	30-Nov	5-Dec	12-Dec
Data Collection													
Data Processing													
Data Analysis													
Data Interpretation													
Website Development													
Final Deliverables													

Budget

	Hours Per Week	Project length	Total Hours	Hourly Rate	Total Cost					
Data Collection	20	2 weeks	40	30	\$ 1,200.00					
Data Analysis	20	3 weeks	60	45	\$ 2,700.00					
System Management										
Project Manager			50	80	\$ 4,000.00					
Assistant Manager			50	60	\$ 3,000.00					
GIS Analyst			50	45	\$ 2,500.00					
Total										
Equipment Costs										
Supplies	(\$20	\$ 200.00								
Maintenance	(\$2	\$ 100.00								
Depreciation*					\$ 200.00					
Total										
Total Costs										

^{*}Depreciation: \$15,000 total value of equipment/ 30 equipment life in months *3 months equipment will be in exclusive use for project

Final Deliverables

- CDs
 - ❖ All data
 - Poster
 - Metadata
 - Power Point presentations
 - Proposal, Progress, and Final reports
- Website
- Final Report
 - Data
 - Maps
 - Metadata
 - References
- Instructions on how to use the CD (readme file)
- Professional Poster to be displayed in Evans Liberal Arts Building

Conclusion

- Techniques we will use:
 - ❖ Identify and quantify the areas in Austin that need more trees planted to offer optimum canopy benefits.
- Data:
 - Secondary data from: the City of Austin Urban Forestry Program and the City of Austin GIS files.
- Analysis:
 - * This project should offer some answers as to how the current canopy in Austin relates to the trails and what might be done to improve the coverage.

Reference

- Dwyer, J. F., Mcpherson, E. G., Schroeder, H. W., & Rowntree, R. A. (1992, September). Assessing the benefits and costs of the urban forest. *Journal of arboriculture*, 18(5), 227-234.
- Heat island impacts. (n.d.). In *heat island effect*. Retrieved March 16, 2011, from http://www.epa.gov/heatisland/impacts/index.htm
- Kuo, F. E., & Sullivan, W. C. (2001, May). Environment and crime in the inner city: Does vegetation reduce crime? *Environment and behavior*, 33(3), 343-367. doi:10.1177/0013916501333002

Questions???